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Operators of numerical integration of functions are constructed.
Also-considered is the question of estimating the total error. T-he operators
aLre applied to the solution of a problem with initial conditions for ordinary
linear differential equations with constant coefficients. It was determined
thiat the process of finding the solution of -a 4differential equation of the type
-being examined by means of numerical integration operators reduces to arith- 4
metic operations with numerical matrices raz, consequently, is highly suitable
for computer realization. An example is given, illustrating the advantages
of the proposed method,

*vp-emodd byNATIONAL TECHNICAL
IN4FORMA71IN SER~VICE

SP*'1VNK Va. 22t131

Appitoved for public release; distribution unlimited.

-Ii

I Li L :;~7tP~1G S



-~ - -t~ - -- 77

UNCLASSIFIED i
DOCUMENT CONTROL DATA.- R& D

Security clat.sifirson of title. be* ct J4bottart mod indeulnt anneatitoun *dit b~.iI~t enar hen ati, oereall report is ciasailitd)
i- ORI1GIN4A TING A-- iViTy (Crort auhm 2. REPORT SECURItTV CLASSIN'SCASION

The Johns Hopkins Univer eiAy, Applied Physics Lab. Unclassified ____

8621 Georgia~ Avenue
Silver Spring. -VAd,

S3. VICPORT TITLIC

4 On the Solution of Ordinary Linear Differential Equations by Means of Numerical
Integration Operators 

A

4. 05oCSRPTIVE NoTt~s j'7PO "t repo.t 644 MOl~SSI~e delta)

A. V. INesterchuk

_.P- - -T

a. REORT ATE IL. TPO LNSO.IN F PIAGES copT016.0'

4AVMLrcREhO19V *v 
a O r n n c y te s C o m

by means oi numericalR lntegOto rprtr reduces to n arithmetic oeraatin with

numericalThi marcsa d ceumenty ias beenl approv~ed for compute reealizatin.sae
Yn exampleritiio is unive miutratin thAdatgso hepooe ehd

4-a" 11 ;>t£CT" 4V91. PNOIG01TR CIIV
NAPLNREO

Naa4rnneSytm omn
OprtrDfnmriaDnerto of,17 functiosare co-



S:OR 3

UNCLASSIFIED
Secutirl Cesaificatiom

KEY WORDS

Mathematical analysis

Numerical methods

Requester: N. Rubinstein

UNCLASSIFLED 
-•

Iewt lssfvco



-Z ý

ON THE SOLUTION OF ORDI1ARY LINEAR DIFFERENTIAL EQUATIONS

BY MEANS OF NUMERICAL INTEGRATION OPERATORS)

by

A. V. Nesterchuk [Nester'cuk

~jI Considered in [1,21 are several aspects of the solution of differential

equations by means of numerical integratlon operators. Considered in the present

paper are new numerical Integration operators and their application to the computer

solution of ordinary linear differential equations. Also examined is the problem

of estimating the total error.

Given a function f(x) ccntinuous on the segment [0,1. We divide the

segment [0,1) into n equal parts, h We introduce the notation
S• • , ---- . 0 , X ih , i t = ( X ,) . It j [t,I = 1 1 £ , - , f ,,l i 0 4 , 1 . . ,

We shall calculatel7(t)dt, O4x<1from one of the quadrature formulas,

e.g., by the trapezoidal formula. Then

f(t) di h. (f. + 2f, + ,)-= h 1£or f,, 12 .
.~ ~ ~ ~ I .1' ....

Translated from Ukr. Mat. Zh. [Ukr. Math. J.], Vol. 17, No. 4, pp. 112-119
(1965).
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(1) di- h2(o 1 + +2. -
-' 2 0 1 -...

22

oin the general case,

where * -

Az= 0 0 1 2. .2
0 1 22... 2
0 0 0 1...2

0 0 0 0..I

Thus, the matrix A is a difference operator on the right in thn trape-

zoidal formula. In what follows we shall call it the numerical integration oper-
IA

ator. Denoting y,=-f(Qdt, equality (1) can be rewritten in the form

ly, l :zh Itl A,. k = 0, 1. 2,....,: , = 0, 1. 2 .. , n.

Here the error can be found on the basis of the equalities
Y,= h fo + j)- h'r'•, Q. ,0 , oc,;.-

2 12

12 2- 0 q" 2 42h, (2)

÷I

he (t -ý~ f21, + +. +2t.,_1 + Mi-ik'(0 4C 4C Anh

From (2) it follows that A

i A, , l(3)

where

The one-row matrix R will be called the error vector. Expression (3)

characterizes the error of the method. Th2 total error is the sum of the method
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error and the computational error. Apropos the total error, the following theorem I
holds.

Theorem 1. If the function f(x), defined and continuous on the segment

L[0,1), has on this segment a second derivative for which the following condition

is fulfilled:

I then in calculating S (tdL, 0,4x by means of the operator A,, Hhen the errors

in the calculated values of the function f*(ih) (i = 0,1,.,.,n) do not exceed the

quantity the vector of the total errors R(x has the forml v o

J~12

•-: ~Mh• :

-error vector for the approximate vector h[ff*A is deter-

mined in the form of the difference

) - -U I k =0 I,2,...,.. (4)-•

i We calculate the i-th component of vector (4). Taking (2) into account, we get

I

h •,(to+,,, +.. +.f_ 2t- ,11 M)-h'Jr.-,•. r,. fj,,.• :
2

L 1

Is T 0( + 21, +.- + 21,_, + 1-) hel" (E)- h O/; + 2r +..-:•
..+ 2t"_, + r h t(j•-t• + (2f- 21 +.

..+ 2 (f._, r,_,) + (f, jj- T,• -2 h •' (t),
(5)I = 0, 1,2,.,; 02iC.A

By the condition of the theorem If- f*j ; then, from (5)

3 12
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dt0 -,h jjýA,) 4C.h,2. Afh'" i ,A$
~"i-2' 12 12

?° ~ ~Mh' .•
-r- (i+ 1). 1• ,, .. n. (6) •

Taking the obvious equality !(I[))dl j l-]lA,.)jo and (6) into

account, we can write

12 10 2t. ,3 .... , n + 11.

More accurate will be an operator constructed by means of second- and

third degree parabolas. When x h we use the trapezoidal formula; then

1 (7)

When x • 2h, by the Simpson formula we have

t ( d. + 4f +,) (8)

and when x = 3h, we have by the "3/8" Simpson formula

d'f(O 3 -h (f9+ 3f, + 312 + (9)

But if x 4h, we apply the "one-third" Simpson rule tvice, arid when

x 5b tnis same rule is applied from 0 to 2h and the "three-eighths" Simpson

rule from 2b to 5h. As a result, by analogy with (1) we get

where

"J2a

R~

---- ---- ---- ---- =~75
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A
"12 8 D 8 8...8 8

0 12 32 27 32 32. .32

0 0 8 27 16 17 16.16

i000 32 2?.. 3325
AS 0 0 0o 0 8 27 16

00 0 0 0 9 ... 32

0 0 0 0 0 0 .8(9)

The last diagonal element equals eight if n is even and 9 •f n is odd. The

error in this case can be feund on the basis of the equalities

ftt 30 231 _I

8Thu h(I + o 1o• +20<E3( + < -h

3/2 •3) ff(),',
(,= 1 .h O+32, + 17,+ 27f + 2716 4 .+.9I ,

71)9 (~+ O71"a)

0 C 42h, 2h <E;< S
.... ... ........ 30,;.,,,.

Thus, it follows fr rom (11) that

I tyld-h fA 21 <R, (12)

I' where

insofar as the total etrror is concerned5, a theorem analogous to theorem 1



is fulfilled in the process of appiying the operator A .2

Theorem 2. If a fuaicUton f(x), S ,dnd continuous, n the segment

SLO,1, has on this sege.nt derivatives of up to ard including the fourth order

and if the conditio..i 16eh--r (v)i -am, Wv'(w~)I <t<', Are fulfilledJ, in

calcuta.ng by weas of the operator A2 , wheu the errors of the cal-

culatel values of the r-inction f*(x) in earh integ; tion step h do not exceed the

•v,,,uee 72 the total-error vect-r *.P has thie form
-- 720 - ----i

-20-10. 2,10.30,20,40.30, 50....].

""he oof of theorem 2 in analogous to the proof of theorem 1, and thqre-

for"- .ye wii . " e it here.

S'p•.. •peated integration by means of numerical operators, the matrices

representing these operators multiply out. In fact, if we calculate f

dtI ft r

then, denotio, •f ()dr by 1(t), we get from (1)

[CID4(t) dt]::Z:h 10()1AA, I? A2 1.2, (1.3)

It is easy to see that

b t c..ý~udu CljA,, i 1.2. (14)

It should be noted, however, that it is not always expedient to use

formula (14), since the calculations can be made more successfjlly if the left-

hard part of formrula (14) is replaced by the Cauchy formula:

Cdq 1 jd% ldn%.. (kh f-4 '[f(t) dt. (15)

and then formula (I) is applied.

Now let us consider the solution of ordinary linear differential equa-

tions with constant coefficients by means of numeridaX tintegration operators.

-6-



[ iven the differential equation
ay'+b by-(), 04x 1. (16)

wk•ere a and o are constants, with the initial condition

'Y • (0) =Y"(17)

(16) tat acout e)e
By numerical integration of Eq. (16) taking (1) and l,

Sa |•a (-- aye !. I .. 1 bh lyjl Aj h Iftl A,

or

where 1 is the unit matrix. The matrix al + bhAi is invertible , since it is

triangular and its diagenal elements are different from zero; and when h 1A abaj1

(a.. are the diagonal elements of the matrix A1) det jaI 4 bhAij $ 0. From (18)

we get
CI

S(h A,+ + ,1, .... (19)

- t- where B a + bhAi (1 1,2,), is a matrix which we will call "resolving".

Equality (19) is the computational formula for finding the solution to the problem

(16)-(17). Tp
Let us now consider the second-order differential equation

ay- ++by' +cy ft(), xCei0, 11, (20)

where a, b, c are constants.

IN
"y *Integrating the Lirst time we get 41

X z

ayV + 4&+ C yd0 f QPydt ay; + Iky.

\Now we integrate (21) taking (13) into account aod r'et

ay-ib ýyJ+c jr= ~diI Ift) di + (ail ) dt7

-7-
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or

j ~t + bh [yjl A, + Ch tuy A,' ha IIAJ A,

'(ay;'tbyj (0, 1,2,...., n) +ayo, l,.I, i-- ,2;. ,
(22) ,

k =0, 1,2 .... ,n.

For the given equation we call the matrix
B =a/ + bhAt + dhMA, 1 , 2. -

the "resolving" matrix.

In view of the fact that the matrix A. Is triangular, for its invertibil-

ity it is necessary to choose h such that

then det B 1 0 and formula (22) can be written in the form

jyj [g| h'ljfjAk (ay; +1 byo) 10, 1,2....n] +'ayo11, 1,- 11) B-1. (23)IA
hiZA ,+ 2; k(=0, 1,2,.... n.

Formula (23) will be the computational formula for finding the solution to

SI problem (20). When integrating Eq. (21) it is also possible to use equality (15)

instead of (13). We then get

I? Ifj ll k -- l,,Aj -+- 1q + byo) lO, 1, 2, .. ,n) + ayo1, 1...1l

Swhere 1 1,2; J 0 ,l,2,...,k; k =0,1,2, .... ,n; [k - j]d s a diagonal matrix. :

S1 We proceed analogously in the solution of an m-order linear differen-

ri T tial equation, applying m-fold integration using equality (14) or replacing by

formula (15).

From (19) and (23) it is clear that the process of finding the solution

of a differential equation reduces to arithmetic operations with numerical matrices,

which makes this method suitable for use in the computer solution of differential

Sequations of the indicated type, since standard programs are used to multiply

PJ



and invert matrices.

Here the process of inverting the matrix B has an appreciable effect

on the accuracy of calculation. This must be done by the method indicated in [3],

i.e., by introducing a correction to the elements of the matrix B

Example. Let us consider the simplest differential equation

y' +2y= 80-4x. xe[0. 11 (24)

with initial condition y(O) = 1, having the obvious solution y =4 2 -

6x + 3 - 2e" 2 x. For the solution we use the operator A2 with h = 0.2.

The computational formula for finding the solution of Eq.(24) has the

form

'YhI = 10.2 A2 + (I. i,..., il B-t .

4-4
where f(x) 8x 2 - 4x, B =I + 0.4A.,, k =0,1,2,3,4,5.

The solution matrix, obtained analytically, is written as

[kana [I , 0.6194, 0.3410, 0.2376, 0.3562, 0.8343];

obtained by the proposed method it is written

LYkA2 1, 0.6205, 0.3408, 0.2365, 0.3552, 0.8331];

and by the Rttnge-Kutta method (with computational formula

IX
IYkORK = [1, 0.6139, 0.3369, 0.2334, 0.3512, 0.7246].

The relative errors at selected nodes are, respectively:

by the proposed method:

6, = 0.16%, 6 .2 0.07%, 63 0.46%, 54= 0.28%, 5 5 0.14%;

by the Rnge-Kutta method:

6l 0.89%, 12 0.67%, T3 = 1.77%, 114 1.57%,, n5 13.2%.
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Setting - z in (13), we get
N" (+ P(z)M(Z)I-to,(z) P,(z)M(z'- (14)

Starting with relations (9) and (14), and thet, completely repeating the proof of

iemma 4.1 from £1), we arrive at the following statement.

Lemma 3. In the completely indefinite case, for every finite domain G

of the corplex Zlane there exists a constant q such that

Q01 ~(Z)Q, (Zil ~q0  (15)

Let us give without proof one more statement which describes the M(z)

at any fixed point z (Im z $ 0) that correspund to all orthogonal operator distri-

bution functions T(X) of the positive-definite function F(t).

D Theorem 2. In the completely indefinite case, for fixed z (Im z $ 0)

the set of M(z)

(Mz)-O(z) + - I2 CZ) UI,(z) (16)

corresponding to all possible orthogonal distribution functions 2(X) of the function

F(t) ranges over the ",perator circle" Kz [l] with center

-z) z -+

I -

and radii (le9ft and right) r tz, 1/2 U rangesoeal

--- - (),r,(i-sFz)

unitary operators in H.

Replacing z by and by z in (13) and multiplying we get

i

(17)

vhere

1(18

-B9
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